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1 Introduction 

1.1 Scope 

This document defines the architecture of the Integrated Alarm System (IAS), which is 
being developed as an EU funded ALMA Development Project. 

1.2 Definitions, Acronyms and Abbreviations 

This document employs several abbreviations and acronyms to refer concisely to an item, 
after it has been introduced. The following list is aimed to help the reader in recalling the 
extended meaning of each short expression: 

ALMA Atacama Large Millimeter/submillimeter Array 
ASCE Alarm System Computing Element 
BSDB Back Stage DataBase 
DASU Distributed Alarm System Unit 
ESA European Space Agency 
ESO European Southern Observatory 
GUI Graphic User Interface 
IASIO Integrated Alarm System Input/Output 
IAS Integrated Alarm System 
JAO Joint Alma Observatory  
JVM Java Virtual Machine 
LTDB Long Term DataBase 
RDB Relational DataBase 
TF Transfer Function 

2 Related Documents 

2.1 Reference Documents 

The following documents, of the exact version shown herein, are listed as background 
references only. They are not to be construed as a binding complement to the present 
document.  

RD1 Integrated Alarm System for the ALMA Observatory; ESO-287159 Version 1 

RD2 Integrated Alarm System Architecture Review – Minutes of Meeting; ESO-299319 
Version 1 

3 Introduction 

The ALMA observatory is composed of many hardware and software systems like the 
Array, the cooling system, the power plant and so on. Each of these systems must be 
correctly functioning to ensure the maximum efficiency of the site. At the present, 
operators in the control room, as well as engineers sitting at their desks, follow the 
operational state of the observatory by looking at a set of non-homogeneous panels. In 
case of problems in one of the systems, they have to find the reason by looking at the 
right panel or log file, interpret the information and implement the proper counter-action. 
The procedure to recognize a problem and start the counter-action is therefore not 
optimal: for that reason, we have investigated the actual situation with the collaboration of 

http://library.nrao.edu/public/memos/alma/memo600.pdf
https://pdm.eso.org/kronodoc/1260/Get/418065/Integrated%20Alarm%20System%20Architecture%20Review%20-%20Minutes%20of%20Meeting.docx
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an alarm system expert of the European Space Agency (ESA) and produced a report of 
the actual situation [RD1]. 

In [RD1] we have found that each monitored system has a hierarchical structure that can 
be modelled with an acyclic graph whose nodes represent the components of the system 
(see the right side of the graph in Figure 1). Each node, or component, of the monitored 
system can be working properly or be in a non-nominal state. In the latter case, the error 
could or could not generate an alarm to catch the attention of the operator or engineer. In 
fact, depending on the particular operational phase, an error could be safely ignored 
without distracting the operators. This is for example the case of failure generated by a 
non-operational antenna during the maintenance. This shows that having an error does 
not correspond 1-to-1 to an alarm: the monitor points in input to a component must be 
elaborated against a user provided heuristic to decide case by case if a non-nominal value 
in one or more of them is enough to produce an alarm for the operator. The model graph 
in the right side of Figure 1 shows the nodes that are working well in green and those in a 
non-nominal state in orange or red. Such information can be used to map the information 
in the model in the panels for engineers and operators as shown in the left side of the 
same Figure 1. 

 

Figure 1 The schema of the alarm system from [RD3] 

 

In the scope of the report in [RD1], a study of the actual situation in the ALMA control 
room has been carried out (see Appendix 1 of [RD1]) to identify the major problems of the 
actual alarm system and to draw the road map for the development of a new alarm 
system called Integrated Alarms System (IAS); integrated because it will show in a 
centralized way all the alarms coming from different monitored systems to increase the 
operator situational awareness and increase the overall efficiency of the observatory. 

More formally, the Integrated Alarm System is a distributed software system whose main 
purpose is to get alarms and monitor points from different sources and generate alarms to 
present to the users, who can range from operators in the ALMA control room, to 
engineers sittings at their desks at the Executives. The alarm system is a message 
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passing facility that routes abnormal situations detected from hardware or software to the 
user in a uniform and an easy to understand format. The purpose of such tool is to 
increase the situational awareness of the audience and help understanding the root cause 
of a chain of problems in order to minimize the reaction time and improve the overall 
efficiency of the facility. 

4 High level picture 

 

 

 

Figure 2 High level picture of the Integrated Alarm System. 

The inputs of the IAS come in the form of values from monitor points like a temperature 
sensor, or alarms generated by other alarm sources such as specialized software systems 
like for example the ALMA Common Software (ACS) or the control system of a power 
plant. The set of inputs is therefore very heterogeneous: the IAS must be able to elaborate 
each type of input independently of its format and the software system who provides it. In 
the scope of this document, we will call the input to the IAS Integrated Alarm System 
Input/Output (IASIO), regardless if they are the values of monitor points or alarms, and 
without distinction of the software source that produces them. Figure 2 shows, at the 
bottom, three hardware systems, the network, the ALMA array and the power plant with 
their software systems. The software systems monitor the hardware and route monitor 
point values and alarms to the IAS that, after a proper elaboration, sends alarms and 
status information to the alarm panels.. 
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The difference between the IAS and a traditional alarm system is that latter is tailored to a 
specific software system while the IAS deals with alarm sources and monitor points 
generated by different software systems. A traditional alarm system does what the IAS 
does when all its the inputs are produced by the same software system and, as such, the 
IAS is an alarm system extended to get values from heterogeneous sources and presents 
them to the users in a homogeneous format. 

The IAS reads all the IASIOs and, if an abnormal situation is detected, generates one or 
more alarms that will be shown to the audience by means of a set of GUIs.  The GUIs 
show the state of the system at a given point in time. A GUI layout with a consistent look 
and feel is very important to let the operator realize immediately what a root cause of a 
problem is and how to fix it. For that reason, we organized a workshop (in Appendix 2 of 
[RD1) with the participation of all the relevant stakeholders to sketch the most important 
panels for operators and engineers. A main panel, always visible in the control room, 
shows the overall state of all the various monitored systems. In case of a problem the user 
can click on the relevant area to drill into the details of the alarms by opening other sub-
panels. Some of these sub-panels can show the geo-location of devices or a schematic 
representation of the monitored hardware. A flat table of the alarms and monitor points of 
the monitored system will also be provided. 

This document describes the architecture of the IAS software based on the studies 
described so far. 

5 Integrated Alarm System Building Blocks 

This section describes the main building blocks of the Integrated Alarm System, their core 
functionality and how they are used to model the monitored systems and subsystems. 

5.1 DASU 

The core of the IAS is a distributed software system composed of Distributed Alarm 
System Units (DASU) that concurrently evaluate the IASIOs in input and, if appropriate, 
produce one or more alarms. Sometimes when the translation of IASIOs into alarms is 
very complex or a number of IASIOs must be correlated, the DASU produces an 
intermediate value instead of an alarm. We call such temporary value a synthetic 
parameter. The number, configuration and deployment of DASUs depends on the 
systems to monitor and is a choice of the IAS administrator. Typically, a DASU represents 
the IAS model of a particular subsystem of the observatory. For more complex 
subsystems, it can also make sense to break them down into a hierarchy of DASUs, most 
likely following the natural hierarchy of the subsystem. 

The output produced by a DASU being an alarm or a synthetic parameter can be, in turn, 
the input to another DASU. 



 

Integrated Alarm System Architecture 

 Doc. Number: ESO-293482 

 Doc. Version: 2 

 Released on: 2017-04-11 

 Page: 8 of 28 

 

Document Classification: Public 

 

Figure 3 The DASUs collaboration diagram. 

This design follows the principle that the software systems that produce the IASIOs in 
input to the IAS can or cannot be completely separated. For example, (see Figure 3), the 
Power Plant is completely independent of the Water System. Suppose that the DASU in 
the middle represents the entire Power Plant and DASU on the left side the Water 
System. The output of the Water System DASU can show an alarm if the level of the 
water in the tanks is too low. The Power Plant is not affected by the level of the water so 
the relative DASU does not show an alarm. If it makes sense, the same IASIO can be part 
of the inputs to more DASUs as shown in Figure 3. Suppose that the Power Plant takes 
the water for cooling from the Water System. In such a case the level of the tank can be 
one of the inputs of the Water System DASU as well as one of the inputs of the Power 
Plant DASU. 

On the other hand, if there is an alarm in the Power Plant, it could affect the ALMA Array, 
the DASU on the right side, so the output generated by the Power Plant DASU is one of 
the inputs of the ALMA Array DASU; depending on internal logic the alarm from the Power 
Plant can or cannot trigger an alarm in the ALMA Array. In the control room, there could 
be a panel showing one box for each DASU where the alarmed ones are represented in 
red. By clicking on a red box, the user is presented with a more detailed panel to analyse 
the root cause of the alarm. 

The example above suggested to associate one DASU to each of the monitored software 
systems (as described in Figure 2) but it is not the only possible way to use the DASUs. 
The number of DASUs and their interconnections represents a convenient decomposition 
of the real system allowing to model the observatory so the definition of the DASUs is a 
task of the alarm system administrator. Other examples of DASUs are modelling of a 
device, or an entire antenna. 

In case the IASIOs in input to a DASU are produced by an external software system, they 
must be converted to the proper format before being processed by the DASU. The IAS will 
provide specialised software components, called plug-ins, for each connected system. 

A DASU runs inside a Java Virtual Machine (JVM) and it is possible to deploy more than 
one DASU in the same JVM. To reduce the network traffic or improve performances, it 
can be useful to deploy a DASU close to the sources of its inputs but due to the network 
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topology and the nature of a software system it is not always possible. For example, to 
avoid performance degradation during observations it might not be allowed to deploy 
software that gets the values of the monitor points by polling the components of the 
running system. Other control systems are closed i.e. do not allow to start additional 
processes at all. 

5.2 Alarm System Computational Element 

 

Figure 4 The Alarm System Computational Elements run inside a DASU 

Each DASU is composed of one or more Alarm System Computational Elements (ASCE) 
that are the software components that perform the evaluation of the inputs to produce, in 
output, alarms or synthetic parameters. 

The DASU in Figure 4 is composed of seven ASCEs. At the bottom the arrows represent 
a set of inputs coming from different heterogeneous sources. As we already said, they can 
be monitor point values or other alarms some of which are currently active and 
represented in red. If needed, the inputs are converted to the proper data structure by the 
conversion layer before entering the DASU: converted alarms and monitor point values 
are the only information circulating through the various parts of the IAS. The conversion 
will be performed by dedicated plugins that interface a remote alarm system or monitor 
point source to the IAS. The conversion layer in Figure 4 is therefore a logical 
representation of the conversion itself as it can happen in other parts of the IAS, i.e. not 
necessarily in the DASU itself. 

Converted inputs are routed to the proper ASCEs (not shown in the picture) by a simple 
subscription mechanism. Each ASCE applies specialized heuristics to its inputs to 
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produce an output that, in turn, can be the output of the entire DASU (ASCE7) or the input 
of other ASCEs.  

The output of ASCE2, for example, is the input, possibly together with other IASIOs, of 
ASCE5 and ASCE6. The output produced by each ASCE is made available to all other 
ASCEs running in the same DASU. 

Each ASCE has a rule to transform its inputs into an alarm or a synthetic parameter 
(output). As an example of a single input, think of an ASCE having a temperature as its 
only input. The rule to transform the input into an alarm can be to check the value of the 
temperature against a threshold and generate an alarm if it is too high. However, the case 
of a greater number of inputs is more interesting because the rule correlates many inputs 
to generate the output. For example, suppose to have an ASCE with two inputs, a 
temperature and the status of a fan: now the ASCE raises an alarm if the temperature is 
over the threshold and the fan is not running; in all other cases the alarm (in output) is not 
raised. As such an ASCE can decide that an alarm received from one of its inputs is not 
relevant and not propagate it to the output. It is the case of the ASCE6 in the picture.  

Not propagating an alarm ultimately means that the alarm itself does not need to be 
announced to the operators because no action needs to be done. Suppose for example to 
have an alarm because one of the interlocks of an antenna is set. This alarm normally 
needs an action because the antenna is not operational and cannot be used for 
observing. But the same interlock alarm can be safely ignored if the antenna is in 
maintenance or not part of an array as it does not affect the observation.  

In this context, we call the heuristics, or rule to transform the IASIOs into the output of an 
ASCE a Transfer Function (TF), in analogy with neural networks where a neuron transfers 
the values of all its inputs to a single output. More formally, we can say that the output O 
of an ASCE E with n inputs, I1…In, is the result of applying the transfer function ∑ to its 
inputs: 

𝑂𝐸 =∑𝐼𝑖

𝑛

𝑖=1

 

The heuristics of the transfer function of each ASCE is provided by the operators or the 
engineers that have a deep knowledge of the system and coded by the alarm system 
administrator. A set of TFs for the most common and generic cases like the threshold 
presented before, will be provided by the IAS. For each ASCE the IASIOs in input and 
which TF to use are defined in the Configuration Database (CDB). 

The TF provided by the users of the IAS must be checked carefully against the risk to 
introduce instability during operation and validated by the alarm system administrator. To 
improve the robustness, the IAS checks each invocation of the TF to detect malfunctions 
or undesired slowness. If it is the case, the ACSE is marked as faulty and in the worst 
case its TF inhibited. 

For performance reasons, the TF must be compiled into JVM byte code. The association 
of TFs to ASCEs is defined in the Configuration Database, where each ASCE gets 
assigned the name of a Java class that provides the TF. The code of the class 
implements a well-defined interface with a method to execute to produce the output from 
the actual inputs. The only parameter passed to TF is a map of <ID, IASIO> that can be 
used to get the IASIO in input with the ID identifier. 

The entry of an ASCE in the Configuration Database contains the name of this user 
provided Java class: the ASCE loads the class during the bootstrap. The configuration of 
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an ASCE might also contain a user defined set of properties, as required by the used TF, 
in the form of <name, value>, like for example the threshold to raise an alarm if a 
temperature is too high. Such properties allow the reuse of the same TF in more than one 
ASCE. 

The connection of ASCEs is acyclic. The number and connection of ASCEs allows to 
model the hierarchy and interdependencies of real equipment as shown before in Figure 
1. Modelling a piece of equipment is the task of the alarm system administrator and the 
engineer responsible for such a device. The number of ASCEs to deploy in a DASU, their 
IASIOs, their connections and the rules to transform inputs to outputs is entirely 
configurable.  

A central concept of this architecture is that the heterogeneous inputs coming from 
outside of the IAS, after being converted, and the outputs generated by ASCEs and 
DASUs have the very same type i.e. inside the IAS they are absolutely indistinguishable 
and treated in the same way. 

The output of each ASCE is updated at a given time interval that is the refresh rate of the 
output it produces: the changes of the values of the IASIOs can be processed immediately 
or stored in a temporary data structure and evaluated when the time interval elapses. 

5.3 Transfer Function Use Cases 

The same Transfer Function is reusable by any number of ASCEs. For example, the TF to 
raise an alarm if a value passes a given threshold can be used for different monitor points 
ensuring that the proper threshold is set in the Configuration Database.  

An example helps to clarify this concept. Suppose that we want to write a generic TF to 
check if the value of one single IASIO in input is in the operational range [min, max] and 
generate an alarm in output if the value is lower than min or greater than max. The 
algorithm of the TF is pretty simple and limited to few if-then statements. In the 
configuration of an ASCE we insert the name of the class (TF) we just wrote, the ID of the 
IASIO in input and the ID of the IASIO to produce and we set two user properties with the 
max and min thresholds needed by the algorithm. To reuse the same TF in another 
ASCE, it is enough to associate to it the proper values of the thresholds. 

A frequent use-case for reusability in alarm systems is given by the modelling of n 
identical devices. As an example, suppose that one ASCE is enough to model one of such 
devices, as this case is easy to extend to more complex situations. As always, the CDB 
contains one entry for each of the n identical devices (or ASCEs). The TF to run is the 
same for each device so the CDB contains the same TF class name of the devices to 
model. Since the devices are identical, any property we might need to set is replicated for 
each ASCE, but we also set in the CDB an additional property with the sequence number 
of the device we are modelling like for example <devNumber,0>, <devNumber, 1>, and so 
on.   

The output of each identical ASCE could have an ID string ending with the sequence 
number of the device like for example PWSUPPLYn. The input of each ASCE is the same 
in all the devices but their ID ends with the number of the device. So for example the 
device 0 produces the output PWSUPPPLY0 and get as inputs for example 
OVERUCURRENT0, ENGINETEMP0, FANRPM0. In this way the TF of each ASCE 
accesses the IASIOs in input by appending their IDs to the passed device number. As this 
kind of replication is almost entirely provided by the CDB we can then implement some 
mechanism to reduce the entries in the database for such cases. For example, the 
administrator defines the inputs and output of only one device (template) from which the 
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replicated n configurations for the n devices are automatically generated by a software 
procedure that ensures that the pattern described upon is correctly implemented. 

There will also be a need for more elaborate schemas to identify identical devices. E.g. 
the ALMA antennas use four letter codes, CM01-CM12, DA41-DA65, DV01-DV25 and 
PM01-PM04, where a simple sequence number clearly will not work. The IAS will 
therefore also provide the ability to provide user defined schemas when creating such 
devices from a template.  

Another frequent use case is the dynamic relocation of components. In ALMA the classic 
example is given by the antennas belonging to arrays: an antenna can be assigned to an 
array, moved from one array to another or taken out of an array. One possible solution to 
model an ASCE for a given array A that sends an alarm if one of its antennas is not 
operational is to define one input (a boolean operational/not operational) for each possible 
antenna in the system and one input N with the names of the antennas belonging to the 
array (an array of strings for example). The array’s TF checks only the inputs of the 
antennas in N and ignores the others. If one antenna is removed from the array by the 
operator, its name will be removed from N: the TF will then refresh the output discarding 
such an antenna. The same ASCE can be replicated for many arrays with the technique 
we described before.  

5.4 Putting all together 

Figure 5 summarizes the concepts presented so far. The IAS runs on two servers with a 
total of five DASUs each of which contains three computational elements (ASCEs). In 
Server 1 both DASUs run inside the same JVM while in the Server 2 one DASU runs in 
one JVM and the other two in the other. 

A DASU is responsible to collect the inputs, forward them to the ASCEs it contains, collect 
the output of each ASCE it contains, and propagate them to the other DASUs and the 
internal ASCEs. 

The ASCEs’ main task is to evaluate the inputs and generate the output applying the user 
provided Transfer Function. This freedom gives great flexibility, but user errors in the 
Transfer Function could endanger the IAS at run time, so parameters like execution time 
must be constantly monitored at run-time. Each TF must be tested before being used in 
production. A simulator will be provided for testing purposes. 
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Figure 5 IAS deployment overview 

5.5 A modelling example 

The following artificial example clarifies the usage of DASU and ASCEs and is deliberately 
not related to ALMA because the IAS is generic and does not depend on the telescope. 
We have a little imaginary diesel power generator, like the ones we often see when grid 
power is not available (Figure 6), and assume that it is possible to read some variables of 
this device through a software interface. We want to see an alarm in our display if 
something is wrong with the power generator, so that we can understand what the 
problem is and fix it in a short time avoiding a blackout. 
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Figure 6 A diesel power generator. 

The table below shows the monitor points for this device and the identifiers we associate 
to each of them. In this example, we focus only on the ASCEs and DASU and not on the 
conversion of the values of the monitor points to IASIOs as well as the propagation in the 
alarm system. 

Nr. ID Description 

1 ENGNOTRUNNING An alarm set if the engine is not running 

2 FUELLVL The available fuel. If <5 we must refuel. 

3 OILQTY The quantity of oil in the engine. If <3 we must add oil. 

4 FAN A Boolean set to true if the if the cooling fan is running 

5 RPM RPM of the engine. If greater than 5000 we must shut down the 
engine 

6 TEMP If the temperature is greater the 95 we must shut the engine down 

7 220VACFREQ The frequency of 220 AC power must be in [45,55] 

8 220VAC The voltage of the 220 line must be in [215,225] 

9 12DC The voltage of the 12 DC current must be in [11,13] 

10 MAINT A boolean that is true if the device is in maintenance (refuelling, 

refilling the oil, tuning the currents…) 

 

FAN has no constraint as the fan runs only when the temperature is high. MAINT signals 
that maintenance is on-going: no alarms are published during maintenance if the engine is 
not running or the current is out of the specifications.  

Such a device can be modelled with only one ASCE with ten inputs. The output, an alarm, 
is set if one of the conditions in the table is violated and no maintenance is on-going. With 
this implementation when the output is set, we know that something is wrong, but we have 
to check the values of the inputs to understand what was wrong to fix the problem. The 
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panels display all the values of the IAS in the system but they are not allowed to make any 
computation. This is the task of the alarm system.  

So if there are only 2 litres of gas in the tank, the output of the ASCE is an alarm because 
the minimum threshold of FUELLVL is 5. The GUI panel shows the alarm generated by 
the ASCE and possibly the actual values of the inputs. The operator must then check all 
the values and understand what the problem is. For this simple example with only ten 
inputs it is clearly not a big deal, but it is not feasible for a device with hundreds of 
correlated monitor points: finding the reason of a problem could take too much time, 
especially if there is a cascade of alarms. Also, to develop a TF that deals with all the 
possible combinations of hundreds of inputs is almost impossible. 

If we look deeply into the structure of the device and the type of actions for the operator in 
case of problems, we note that there are four main classes of problems, and their 
corrective actions:  

 Problems with the engine not working properly (RPM, TEMP): immediate shut 

down 

 Supply problem (OILQTY, FUELLVL): add oil and/or fuel 

 Quality of 220 Volt production (220VACFREQ, 220VAC): disconnect 220V 

appliances 

 Quality of 12 Volt production (12DC): disconnect 12Vappliances 

A possible decomposition of this device is represented in Figure 7. The big green box 
represents the DASU where seven ASCEs run. At the bottom, the IASIOs in input are 
represented with white boxes. Each ASCE is drawn as a blue box with the name of the 
output it produces. Inputs are connected by black lines while blue lines show the 
connection of the outputs. The graph is acyclic. 

This is how each output is calculated i.e. the functioning of the TF: 

 LOWOIL and LOWFUEL: the TF checks the available quantity against the 

threshold and sets an alarm if the value is too low. 

 HIGHTEMP: this is a synthetic parameter, a Boolean, calculated by checking the 

actual temperature TEMP against two thresholds (t1 < TEMP <t2) and the status 

of the fan (FAN); if the temperature is greater than t1 and the fan is not running or 

is greater the t2 then the output is true in all other cases false (i.e. if the 

temperature is greater than t1 but the fan is working we expect the temperature to 

decrease quickly) 

 ENGFAIL: an alarm is set if it is not running, RPM is too high or HIGHTEMP is true 

 220CUR: checks if the 220AC current is in the nominal range, but only if the 

engine is running 

 12CUR: checks if 12DC current is in the nominal range, but only if the engine is 

running 

 PWGEN, the entire generator: is alarmed if a) there is not enough oil or fuel or b) if 

there is no maintenance on going and there is an alarm in the engine or in one of 

the currents. 
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Figure 7 Example of ASCEs for the power generator. 

This decomposition is only to show the mechanism we put in place, there can be many 
other decompositions of course. In reality, the connections of ASCEs will resemble the 
dependencies between the components of the devices. In this case the device is very 
simple, but enough to explain the main concepts: it shows a synthetic parameter 
HIGHTTEMP that correlates two inputs to produce a Boolean value in input to ENGFAIL. 
It shows also how the output of an ASCE can be the input of another ASCE. Each ASCE 
has its own TF even if LOWOIL and LOWFUEL clearly reuse the same algorithm, so there 
is no need to write the same function twice. 

A GUI panel for this case could show the PWGEN only. If it is in alarm, it changes its 
colour to red. If the user clicks on it, the panel shows the other ASCEs with the alarmed 
ones in red, so operators will immediately understand what is failing and how fix the 
problem. The values of the ten IASIOs in inputs can be displayed on demand: if the 
ENGFAIL is alarmed and the HIGHTEMP is alarmed, the user can see the actual value of 
TEMP. 

6 The Core of the IAS 

The core of the IAS is composed of the DASU and ASCEs we already saw together with 
other components like the Configuration Database (CDB) and the Back Stage Database 
(BSDB), and the IASIO data structure.  

All these components collaborate to evaluate the inputs provided by the remote software 
systems against the model and defined rules, and ultimately generate a number of alarms, 
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either set or cleared. Clients of the IAS, like operator GUIs, are notified of these alarms 
and display them together with additional context information, such as the values provided 
by the monitored components. 

6.1 The Integrated Alarm System Input/Output (IASIO) 

The IAS architecture is based on the uniformity of the monitor points and alarms produced 
by external subsystems (after a proper conversion) and alarms and synthetic parameters 
produced by the IAS itself.  

Values received from external systems are represented by triplets in the form  

<identifier, timestamp, value> 

where 

 identifier is the unique identifier used in the IAS. It is not the identifier used by 

the external software system. It could be composed of the external identifier and 

the name of the remote software system that produced it. 

 timestamp is the point in time when the value has been produced1.  

 value is the actual value of the monitor point or alarm: it can be a numeric value, 

an array of values, a bit mask, a pattern, an alarm or something else.  

These triplets need to be converted into an IASIO data type before being used by the core 
of the alarm system. 

6.1.1 Validity of an IASIO 

The IASIO enriches the triplet by adding properties like the expected refresh rate of the 
value taken from the configuration database, to assess its validity. The validity tells if the 
value has been refreshed within the expected time interval or the new value never arrived, 
for example because of a network problem. The purpose of the validity is to show to 
operators and engineers that a value displayed in a panel may not be up-to-date by using 
a dedicated colour coding. The validity is a property of an IASIO stored in a particular 
ASCE. The ASCE calculates the validity at regular intervals and updates the respective 
property of the IASIO. 

With respect to validity, there are two possible scenarios:  

 if the IASIO holds a value produced by a remote subsystem: the validity is 

calculated by comparing the actual time with the timestamp of the last received 

value, i.e. the value of the triplet received from the remote subsystem 

 the IASIO holds an alarm or a synthetic parameter produced by a ASCE: the 

validity is the minimum validity of the inputs of the ASCE 

6.1.2 Updates of IASIOs 

To reduce network traffic and to avoid potential interference with external systems, we do 
not want to poll remote subsystems to get alarms and monitor points out of their control 
software. As previously described, each subsystem sends the data 

                                                
1 If needed, the triplet can be enriched with more timestamps to track for example the point in time 
when it has been received or processed by the IAS. Such information can be useful for debugging 
or monitoring the processing time of IASIOs from the instant they have been produced to the 
moment they generate an alarm. 
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 on change2, or 

 at regular time intervals.  

If the subsystem does not provide the functionality out of the box, it must be implemented 
by specialized software accessing the control software by the API it provides or with some 
other strategy if no API is available. This effort is part of the integration work necessary for 
each monitored system. The scope and approach depends entirely on the interfaces 
provided by the external systems. 

On input each value is converted into an IASIO ready to be digested by the ASCE. The 
IASIOs have an entry in the Configuration Database with at least the data type of the 
value (e.g. alarm, integer, double), the expected refresh rate, and optionally a tag that is 
human readable name of the IASIOs. 

6.2 Identifiers 

IASIOs, Computational Elements and DASUs all have an identifier that allows to uniquely 
identify them at run time. The identifiers are defined in the CDB and are composed of 
three parts: 

ID The unique identifier 

parentID The identifier of the parent 

runningID Stringified representation of the identifier 

 

The ID is a string that uniquely distinguishes one object from another. The parentID is the 
unique identifier of the parent, making the identifier a recursive data structure: the chain of 
IDs allows to quickly identify who owns an object and where it runs. The runningID is a 
stringified version of the identifier that consists of the ID plus the IDs of all its parents. Its 
purpose is to improve performance at run time simplifying an identifier comparison to a 
string comparison instead of a recursive call to all parentIDs. The recursive data structure, 
and the related parentID, is very useful for debugging: it says for example which ASCE 
produced an IASIO and in which DASU it runs. The structure of the running ID can be 
arbitrarily chosen being the runningID an internal data structure of the IAS. 

The ID of an IASIO is statically configured in the CDB. For example, it can be something 
like “COOLING-WATER-LEVEL”, “12VPower” or whatever else is meaningful with the only 
constraint that it must be unique. The parentID links to the owner, or producer of a 
particular object. For instance, the owner of an ASCE is the DASU where it runs. This 
definition allows from one side to immediately recognize one specific item and, from the 
other, helps routing or locating elements inside the IAS. 

The following table describes a possible assignment of parent IDs of IAS components 
whose final version depends on the final implementation: 

IAS Component Parent 

Value from a remote software system The ID of the remote software system 

IASIO  the ASCE that produced it 

 the plugin that generated the IASIO for 
the value received from a remote 

                                                
2 The number of allowed changes per time interval must be limited to avoid flooding the system 
with tons of notifications that operator could not follow. 
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software system 
DASU Nothing 

ASCE The DASU where it runs 

Conversion plugin Depends on the final implementation: it could be 
part of a DASU or a standalone process 

 

Monitor point values and alarms received from a remote software system have their own 
identifier. The ID uniquely identifies them in the scope of the IAS, but is not necessarily 
identical or even related to the identifier they have in their control software. However, it will 
often be convenient to reuse the same string.  

For example, in the array control software the ambient temperature sensor of the water 
vapor radiometer of the DV16 antenna is 

 CONTROL/DV16/WVR/AMBIENT_TEMPERATURE  

which is unique in the array control software. 

In the IAS it can be mapped in the following ID: 

ANTENNA_DV16$WVR$AMBIENT_TEMPERATURE 

The ‘$‘ is a special character used by convention only to express a containment hierarchy 
in the identifier itself. It is particularly useful for replicated systems. E.g. every one of the 
66 ALMA antennas has exactly the same ambient temperature monitoring point for its 
WVR. The IAS itself does not enforce such naming schemes, for its purposes the only 
requirement is that the ID is unique.  

The parentID of this IASIO could be 

ACS_NC  

assuming that the IASIO is generated by a conversion plugin that listens to the ALMA 
Common Software Notification Channel. 

The runningID of this IASIO would then be 

 ANTENNA_DV16$WVR$AMBIENT_TEMPERATURE @ACS_NC 

The conventions described in the table above are subject to change depending on the 
selected distribution system and the final implementation. For example, in the case of a 
DASU it could be useful to set the parent to the name of the host where it runs. Figure 8 
shows a possible example of identifiers in a DASU named ARRAY01. The strings in the 
picture are the runningID strings composed of ID of the item concatenated with the IDs of 
the parents separated by a `@` character. 
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Figure 8 The identifiers. 

6.3 Configuration database 

The Configuration Database (CDB) stores the configuration of all the IAS components i.e. 
IASIOs, ASCEs, DASUs, conversion plugins, and the Transfer Functions. Each 
component is uniquely identified by its ID and has an optional name mainly oriented to 
human readability, e.g. for displaying an entity in a GUI panel. 

IAS components read their configuration from the CDB at startup as part of the 
initialization. For example, a DASU reads the ACSEs to run, each ASCE reads which TF 
to apply and so on. To apply change in the configuration, the affected DASUs must be 
restarted so that they execute the initialization phase again. The output produced by a 
DASU will be marked as invalid during the shutdown and startup before being resent by 
the restarted DASU. As a future extension, a reconfiguration of IAS components without 
restarting could be implemented by sending an command to them. 

The Configuration Database provides the deployment configuration for each DASU, the 
association of ASCEs to DASUs, the IASIOs in input to each ASCE and the output 
produced by ASCEs and DASUs. A relational database suffices for this purpose. It will be 
possible to define a CDB with text files for testing and to export/import to/from text files in 
the relational database. 

A dedicated web or desktop application will allow to browse and edit the CDB. It also 
ensures the consistency of the inserted data, if such functionality cannot be directly 
implemented by RDB rules. It is desirable to have support for creating and editing 
replicated elements using templates from the GUI. 
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6.4 Interface with Other Alarm Software Systems 

6.4.1 Plugins 

The inputs of the IAS are the monitor point values and alarms produced by external 
software systems. As discussed in the DASU section in page 7, all such alarms and 
monitor points must be converted into the proper format before being propagated to IAS 
computing elements. 

Since external software systems are very different from one another, it is not possible to 
foresee only one communication strategy that works for all the cases, but we will most 
likely need to develop a separate plugin for each different system. Such plugins can 
receive notifications from the external software systems about new alarms being set or 
cleared or changes in the value of monitor points. They can also poll external software 
system through their API to get the values. In both cases, monitor points and alarms must 
be sent to the IAS 

 When their values change 

 At regular time intervals 

The latter informs the IAS that the values it owns are always actual and that the 
connection with the remote system is alive. As a secondary benefit, when the IAS is 
started it receives all the alarms and monitor points at the latest when the time interval 
elapses and without polling the remote subsystem for the actual values. Such refresh of 
alarms and monitor points is used internally by the core of the IAS to evaluate the 
“healthiness”, or validity, of the value itself. 

The usual filtering of alarms and monitor point values produced by a monitored system to 
reduce the flickering or other noises is done up-front by the plugins so that the values 
received by the IAS are stable and reliable enough to let the IAS present coherent alarms 
in the panels. 

Each plugin is a 3-layers software tool (see Figure 9) that runs in the workspace of the 
monitored system or can access its data through an API or any other mechanism it 
provides. The first layer interfaces with the remote software system on which it closely 
depends to get monitor point values and alarms. Collected values pass through the 
filtering in the second layer before being sent to the IAS by the third and last layer.  
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Figure 9 The plugin is a three layer software. 

The IAS provides a library of the most common needed filters to be applied by the plugins 
to the values; it also provides a library to send the values to the IAS core so that 
developing a plugin ultimately means developing the part related to the monitored 
software system (layer 1) reusing the tools provided by the IAS for the filtering and 
sending (layers 2 and 3). 

6.4.2 The Back Stage DataBase (BSDB) 

The proposed solution consists of a Back Stage Database to store alarms and monitor 
points produced by the external software systems: they are represented by triplets of the 
form  

<identifier, timestamp, value> 

as introduced in section 6.1 above. 

Such triplets, coming from the remote software systems, are stored in the BSDB instead 
of being directly injected into the IAS, decoupling the external software systems from the 
IAS itself. 

The IAS, in turn, gets the inputs, i.e. the triplets converted into IASIOs, from the BSDB 
instead of interacting with the other software systems. These IASIOs are routed to the 
DASUs and from there to the ASCEs, where their updated values are stored. At regular 
intervals each ASCE runs the Transfer Functions of all its inputs, checks their validity, and 
produces its outputs, i.e. other IASIO elements, accordingly. The output produced by 
ASCEs is made available to other DASUs and ASCEs to propagate the computation 
through the hierarchical graph modelling the real system. From what we just said, 
converted triplets and the outputs produced by the ASCEs must all be propagated to other 
ASCEs and DASUs, making them indistinguishable in the sense that the IAS treats 
IASIOs produced by ASCEs and those generated by converting the triplets in the very 
same way. 
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Figure 10 represents the logical view of this communication where three software systems 
feed data into the BSDB; the IAS, in turn, gets data out of the BSDB. In the final 
implementation, depending on the network topology and other factors, it might not be 
possible or desirable to deploy any software on external software system. In that case a 
specialized piece of software, running in one of the IAS servers, polls the data from the 
remote software system and feeds the database3. 

 

Figure 10 Back stage database 

 

Figure 11 shows the data flow of the Integrated Alarm System. The external software 
system on the top left side produces monitor points and alarms in form of triplets that are 
sent (1) to the temporary queue T. This communication depends on the particular 
software system and the API it provides, but most likely a dedicated piece of software 
interfaces with the remote software system to get the values, formats them and sends the 
triplets to T. Such software can perform additional tasks on the monitor points like for 
example damping, or averaging. This tool is an IAS deliverable but it is not part of the IAS 
core: it matches with the concept of a plugin we described before.  

A converter4 extracts the triplets from the temporary T queue (2), translates them into 
IASIO objects and pushes them into the IOs queue. The converter may need to access 
the CDB for the translation of triplets into IASIOs. As we saw before the IASIOs are the 
IAS data type for monitor points and alarms and are the only data type that circulates in 
the IAS core. IASIOs contain more information than just the value extracted by the triplet, 
like for example the validity. 

                                                
3 We assume that the remote software system offers an interface to get data out of it. 
4 Or a pool of converters. 
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A publisher5 finally gets the IASIOs from the IOs queue (4) and sends them to the Long 
Term database (LTDB) for permanent storage, and to the clients like the DASU and 
ASCEs, and technical GUIs, i.e. the GUIs for the alarm system administrator. An example 
of such GUIs are to define and manage the deployment of DASUs and ASCEs. 

The number and deployment of the T and IOs queues depends on the framework 
adopted, but in principle there should be one T queue for each remote software system to 
reduce the load on the converters; for the same reason, more than one IOs queue could 
be deployed. 

Figure 11 also shows two DASUs with two and three ASCEs respectively. The inputs of 
the ASCEs are IASIOs that come from the IOs queue (4). The output produced by the 
DASUs, of IASIO type as usual, are in turn stored into the IOs queue (3) to be propagated 
from there to other DASUs (not shown in the picture). From the picture it is clear that 
triplets from external software systems after conversion and IASIOs produced by ASCEs 
are indistinguishable and processed the same way. 

 

Figure 11 Data flow 

Data extracted from T and IOs queues are immediately discarded: the standard way a 
client has to be informed about IASIOs updates is by subscribing to the events produced 
by the publishers attached to the IOs queue(s).  

If needed, IASIOs can be stored in a Hash Queue (HQ in Figure 11) to be easily 
accessible by clients through their identifiers. Getting IASIOs from HQ correspond to 

                                                
5 Or a pool of publishers. 
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polling and shall be avoided whenever possible. The reason to have the HQ is mostly 
justified for debugging and the deployment of HQ must be configurable in the 
Configuration Database. 

The IASIOs in the IOs queue(s) have a unique identifier, ID as described in the “A 
modelling example” chapter on page 13. This unique identifier is a symbolic name. The 
complete identifier, composed of the ID of the IASIO plus those of its parent (from the 
parentID field) is useful for the internals of the IAS core as it contains, in its recursive data 
structure, information about the deployment that can be useful for technical GUIs. The 
runningID and the complete identifier with its recursive data structure are not intended to 
be used by clients and GUIs whose code must be independent of the deployment: they 
must use the unique ID of an IASIOs to refer to it. Some specialized tool for the alarm 
system administrators could still directly use the parentID of an IASIO to show the 
deployment.  

The ID of an IASIO is a unique identifier; mostly a string targeted at ASCE computation, 
not necessarily human readable. It is not intended to bring information to operators or 
engineers. For that purpose, each IASIO must also have a unique, human-readable and 
possibly meaningful string that we call a tag. Such a string is intended to be displayed in 
the panels. 

For example, the runningID of the mean of the temperatures of the metrology component 
of antenna DA48, a synthetic parameter calculated by ASCE4 running on DASU5 could 
be: 

 DA48$METR$MEANTEMP @ASCE4@DASU5  

This is clearly a pretty cryptic string for an operator or an engineer, but brings a lot of 
useful information:  

 the ID of the synthetic parameter,  

 the ID of the ASCE that calculated the mean, and  

 the DASU where it is deployed  

The ID of this IASIO is DA48$METR$MEANTEMP but this does not say much so, even if 
it is useful for the IAS internals does not bring any valuable information to the audience.  

In the configuration database it is the possible to associate a human readable tag to such 
an identifier, like for example “Mean of metrology temperature sensors of antenna DA48” 
that brings valuable information. The tag by itself is still not enough: full documentation of 
each IASIO, what it means and, if it is an alarm, how to fix an abnormal situation, must be 
available and quickly accessible for example in a Wiki page. 

The fact that clients like GUIs are only notified when a value changes or the refresh rate 
time interval elapses, means that at the start-up the alarms and values displayed will be 
marked as invalid. They will become valid as soon as the first refresh for each item has 
been received. 

To get the high performances required for the BSDB, we are intending to adopt an in-
memory database like Redis or a fast file system database like Apache Kafka. Both have 
advantages and disadvantages and similar features including a publisher/subscriber 
paradigm and both fit with our needs. We will have to compare performances, evaluate 
the coding complexity and estimate pro and cons of a BSDB persisted on files against a 
volatile in-memory implementation to take the final decision. It could be needed to run 
different instances of the database to better partition the data and improve performances 
and reliability.  

https://redis.io/
https://kafka.apache.org/


 

Integrated Alarm System Architecture 

 Doc. Number: ESO-293482 

 Doc. Version: 2 

 Released on: 2017-04-11 

 Page: 26 of 28 

 

Document Classification: Public 

 

Figure 12 A zoom into the BSDB. 

Figure 12 shows an example of a BSDB configured with three temporary queues to 
receive triplets from remote software systems, T1, T2 and T3. T1 and T3 have two 
converters; T2 has only one. Each converter polls triplets out of its Ti queue, converts the 
triplets into IASIOs and pushes the IOSIOs into the IOs1 and IOs2 queues. IOs1 and IOs2 
receive IASIOs produced by ASCEs, too. The content of IOs1 and IOs2 is identical and 
replication is managed by the framework, i.e. the converters only write once. The reason 
to have more replicated queues is to improve performance or reliability. It could be 
convenient for example to have one queue close the web server applications so that 
communication happens locally. However, as simplicity is the main rule, one queue should 
be used unless it is proven to not be enough. In the example there are three publishers, 
one in charge of populating the HQ, while the other two publishers send the IASIOs to 
clients. Some of the frameworks for the BSDB provide a publisher/subscriber feature: in 
that case the publishers in the figure do not correspond to a running code. 

The number of T and IOs queues as well as the number of converters and publishers 
depend on the load of the system. For example, it could make sense to have more 
converters associated to the T queue of a software system that delivers a great number of 
triplets. 

Note that in the schemas in Figure 11 and Figure 12 all the components are grouped into 
the same box, BSDB. This does not mean that all the components of the BSDB run in the 
same server 

The LTDB is the place to save everything produced by the IAS like logs, IASIOs, 
command history and so on. We expect this database to be stressed by many writes but 
not so much for reading; a possibility could be offered by Cassandra. Feeding the IOs 
queues with the IASIOs stored into the LTDB, it is possible to regenerate the state of the 
IAS at a given point in time. 

http://cassandra.apache.org/
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7 GUIs 

The IAS has to provide GUIs that provide operators and engineers with a clear 
understanding of what is going on in the system and actively help them fixing abnormal 
situations in the shortest possible time. The main difference between the engineering and 
operator GUIs is the fact that operators are allowed to interact with the alarm system, 
acknowledging or shelving alarms, while engineers are only able to view the current state 
of the system. Clearing of alarms is not possible as the alarms clear automatically when 
the abnormal situation has been fixed. 

The panels display the alarms with a consistent colour coding so that it is easy to get the 
state of the system with a glance even from a far distance from the display. Invalid alarms 
will be represented in all the panels with the same colour in all the panels, the same will 
happen for active and inactive alarms. A newly activated alarm blinks to catch the 
attention of the operator to something that is changed and it will continue to blink until the 
operator explicitly acknowledges it. The operators in the control room are the only ones 
that can acknowledge a newly activated alarm: they have also to insert a comment. The 
acknowledgment and the comment will be recorded in the LTDB and the alarm will stop 
blinking in the panel. 

If an alarm is active and acknowledged in the panel for a long time it can be disturbing and 
distracting from important new alarms. To mitigate such a situation, it can be shelved for a 
defined time interval. Shelved alarm will be masked in the GUI for a proper time interval 
before being un-shelved automatically. The purpose of shelving an alarm is to display an 
alarm as if it would be inactive for a time interval. A typical use case for shelving an alarm 
is when the action to fix a problem has been initiated by the operator but it requires long 
time before the problem is solved and the alarm automatically cleared in the panel. In this 
case shelving that alarm will remove it from the panel and the operator is not distracted by 
an alarm whose solution is already in progress. The shelving of an alarm lasts for a 
defined time interval to be sure that it is not forgotten forever. It is for example advisable to 
un-shelve alarms at the end of one shift to let the operator of the next shift aware of any 
problem in the system. 

The ultimate design of each panel closely depends on the system to model. A general 
layout for the most useful panel has been drawn during a workshop [RD1]. The final GUI 
design will be elaborated from these initial design sketches.  

To allow operators in Chile, as well as engineers at the Executives to access the alarms 
produced by the IAS, the most suitable solution is to have web interfaces served by a web 
server located close to the IAS having access to the IASIOs in the BSDB queue as of 
Figure 11. 
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Figure 13 Operator and engineering GUIs. 

Figure 13 shows the high level picture of the GUIs framework of the IAS. The IASIOs 
pushed into the BSDB are sent to an application running in the web server, which is in 
charge of forwarding the IASIOs to the web browsers, where an application draws the 
panels for operators or engineers.  

Due to the implementation of the propagation of the IASIOs, there will be a delay between 
the moment the operator opens a GUI and the point in time when the panels receive all 
the IASIOs. During such time interval the IASIOs will be invalid. This is a not a problem 
considering that alarm panels stay open most of the time, and the relatively short refresh 
intervals for most of the data. To mitigate the delay, a panel could forcibly poll the web 
application on the server for an immediate refresh.  

The IAS will provide a certain number of technical panels to be run locally, i.e. within the 
OSF operational network, by the alarm system administrators to monitor the current state 
of the system, debugging, assess performances and so on. For example, a simulator to 
feed a DASU with a certain set of IASIOs and check the outputs they produce after 
running the TF. Or a tabular view of inputs and outputs of the ASCEs to follow the 
computation at run-time. A web application to browse the LTDB is also foreseen. 

The architecture of the GUI framework described so far is mostly logical as the final 
design depends on the GUI framework adopted and decided at a later stage. 

 

--- End of document --- 
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